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Trace impurities often collect on the upstream side of an obstacle in the surface of 
flowing liquid. The transition from practically free surface to  surface sufficiently 
clogged to be treated as stationary can be quite sharp. The viscous flow underneath 
is nonlinearly coupled to the convective mass transfer of surface-active material. For 
two-dimensional flow a t  high Reynolds number the first observations were due to 
Thoreau, Langton and Reynolds over 100 years ago, and the theory was given by 
Harper & Dixon in 1974. If the whole problem is considered from a frame of reference 
moving with the stream instead of fixed to the downstream surface film, the solution 
refers to the leading edge of a slowly spreading oil slick. 

The present work gives the theory corresponding to Harper & Dixon’s for low 
Reynolds numbers (Stokes flow), for which there is a very simple leading 
approximation near the transition for a soluble surfactant, and a more complicated 
one, which can still be found exactly, for an insoluble surfactant which spreads onto 
clear liquid by surface diffusion. In  both cases the surface remains flat: the ridge 
often observed is not a Stokes flow phenomenon. 

The results are used to  clarify the circumstances in which Savic’s stagnant-cap 
approximation is useful for a bubble rising in a viscous liquid: the rear stagnation 
point now plays the role of the obstacle in the surface, and the flow near the surface 
transition can be treated locally as if it  were two-dimensional instead of 
axisymmetric. 

1. Introduction 
The ‘Reynolds ridge’ a t  the leading edge of a region of surface-contaminated 

liquid has been known (but not well known) for a long time. Scott (1982) investigated 
the history, pointing out that  Thoreau observed the phenomenon in 1854, Langton 
(1872) first published an account of it, and Reynolds (1881) seems to  have been the 
first of many independent rediscoverers. The ridge is seen as a slight rise in the 
surface level a t  the leading edge of a spreading oil slick, or equivalently, where 
surfactant collects on the upstream side of an obstacle in the surface of flowing water, 
a t  the transition from apparently free surface to almost stationary surface which is 
caused by a gradient of surface tension. At high Reynolds numbers, this flow 
(relative to  the transition region) is approximately a steady irrotational uniform 
stream past a surface which a t  each point is shifted downwards from the true liquid 
surface by the displacement thickness of the viscous boundary layer. Harper & 
Dixon (1974) gave the theory for a soluble surfactant, such as soap, and Scott (1982) 
confirmed it experimentally, though it must be said that his results were not sensitive 
to the differencc between soluble and insoluble surfactants, nor to the precise nature 
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of the surface film, whether a ‘gaseous film’ on an ideal solution or a monolayer on 
a solution too concentrated to be ideal (Adam 1968). The problem for an insoluble 
surfactant (oil floating on water) was also attacked by Di Pietro (1975), Di Pietro, 
Huh & Cox (1978) and Di Pietro & Cox (1980), who considered both a bulk layer of 
oil and the monolayer which forms on the surface upstream of it, a t  a high Reynolds 
number. If both bulk layer and monolayer are present, the Thoreau-Lang- 
ton-Reynolds ridge is at the upstream edge of the monolayer. 

This paper discusses the transition from free to  clogged on a surface with either 
kind of surfactant. Unlike Harper & Dixon (1974), the Reynolds number will be 
assumed to be low enough for the Stokes-flow approximation to hold. Throughout, 
the word ‘clogged’ is used to  mean ‘covered with enough surfactant to prevent 
tangential motion’; this usually requires the surfactant molecules to cover only a 
small fraction of the surface, so that a gaseous adsorbed film on an ideal solution is 
a good approximation, a t  least in the upstream parts of the clogged region. Besides 
the soap film and the oil slick, either spreading on water a t  rest or stationary on 
flowing water, there is a third physical application: the upstream edge of the 
‘stagnant cap’ which may form on a bubble or drop moving steadily in a liquid 
(Savic 1953; Davis & Acrivos 1966; Harper 1973; Sadhal & Johnson 1983; Lerner 
1985; Lerner & Harper 1991). In  that theory there is assumed to be a transition from 
free to stagnant surface over a distance much smaller than the size of the cap; one 
aim of this paper is to clarify when that assumption holds, as most of the papers just 
cited do not mention the point, and Sadhal & Johnson omitted one of the necessary 
conditions, 

The analysis is local, in the sense that a t  a distance from the origin the flow is 
assumed to tend to the two-dimensional Stokes flow past the leading edge of a flat 
plate end-on to a stream (Carrier & Lin 1948). This is one of the situations covered 
by the well-known remark of Conti & Van Dyke (1969) that ‘under the eye of a 
sufficiently powerful glass most regions of most continuum flows dissolve into a 
uniform stream. Embedded in this local monotone there are, nevertheless, 
exceptional points that will not give up their identity under any magnification. 
Stagnation points, points of flow separation, and the eyes of vortices are some of 
these,. . This results in simple local solutions.. .’. In the present case there is a limit 
to the power of the glass, which will be found : the surface transition is sharp only on 
a large enough lengthscale, and its local solution on that large scale is used as the 
boundary condition a t  infinity for the problem of the small-scale transition from free 
to clogged surface. 

2. Formulation 
Consider a fluid of dynamic viscosity ,u flowing steadily and two-dimensionally at 

very low Reynolds number beneath a surface on which is adsorbed a surfactant 
whose surface excess per unit area (Guggenheim 1957 ; Harper 1972) is r. Ignore any 
variation of the surface from a plane for the moment, and take Cartesian coordinates 
(z, y) with the origin in the surface, the x-axis in the plane along the direction of flow 
and y into the fluid. It will also be convenient to use the complex z-plane and polar 
coordinates ( r ,  0)  where z = x+iy = reu. Suppose that if the surfactant is soluble it 
has been diffusing from solution onto the surface upstream of the region of interest, 
that the surface diffusivity of adsorbed surfactant is D,, and that the transition from 
almost free surface (shear stress czy negligible) to almost clogged surface (surface 



T h e  leading edge of an oil slick 25 

velocity u negligible) occurs over a distance too small for diffusion in or out of the 
surface to be significant. Then we may write 

a a2r 

ax a x 2  
-(C) = Ds- 

in the transition region (Levich 1962; Harper 1972). 
If the surfactant film may be treated as gaseous (Adam 1968), the surface pressure 
is given by 

17 = vp - u = RTf, (2) 

where up is the surface tension of pure solvent, u is the surface tension of the actual 
liquid, R is the gas constant and T the absolute temperature. In  (2), the first equality 
is the definition of I7 and the second is the condition for a gaseous film, which is a 
good approximation for sufficiently small r. In  $4.2, but nowhere else in this paper, 
we assume an ideal solution obeying the condition r= hc, where c is the 
concentration in the solution and h is the adsorption depth (Harper 1972). 
Equation (2) gives 

where A is a positive constant with the dimensions of velocity. Equation (3) is a 
nonlinear surface boundary condition for the viscous flow beneath the surface as well 
as the surfactant concentration by virtue of the dynamical boundary condition that 
the surface shear stress uzy obeys 

The remaining conditions to be satisfied by the stream function @ such that 

u = -  a@ v=-- a@ 
a Y  ' ax ' 

( 5 )  

are that in Stokes flow V4@ = 0 for y > 0, (6) 

@ = O  o n y = O ,  (7 )  

(8) 

and that @ should tend to  the asymptotic form that 

@ - By Im (zi) = Brg sin 19 sin go, 
as x + f 00, y 2 0, where B is a constant with dimensions Lkl'-' which is determined 
by the details of the flow far from the transition region (Carrier & Lin 1948; van de 
Vooren & Dijkstra 1970; Botta & Dijkstra 1970; Van Dyke 1975). 

There are square-root singularities of the velocity and surface pressure a t  the 
origin in the fluid motion given by (8); on y = 0 they are given by 

u = ~(1x1): for x < 0, u = o for x > o,\ 
17 = o 17 = 2 ~ p x i  for x > 0. J (9) for x < 0, 

Equation (8) is the local solution near the leading edge of a flat plate tangential to 
the flow, and it also applies to the locally two-dimensional flow a t  the leading edge 
of the stagnant cap on a rising bubble (Davis & Acrivos 1966). 



26 J .  F .  Harper 

3. Solution 

solution of (6) as 
In  the transition region from free to clogged surface, we may write the general 

(10) 

where w1 and w2 are functions of z = x+iy analytic in the half-plane y >, 0. On y = 
0 we have $ = 0, so that w2 is real on the whole x-axis. By (8), w1 - Bz; and w2 = 

O ( Z $  at  infinity. With the Schwarz reflection principle to ensure that w2 has no 
singularities anywhere, we obtain w2 = Uz + W ,  where U and W are real constants. It 
makes no difference to $ to put W = 0. We may then delete the term Im (w2) from 
(10) if we simultaneously add the constant iU to wl. Accordingly, let w l+ iU = w, 
Re (w) = f(x, y), Im (w) = g(x, y). Then the surface boundary conditions are 

u = 9,  (11)  

$ = Y Im (w,)+Im (wz), 

by one of the Cauchy-Riemann equations, and so 

n= vzydx = 2pf, (13) I 
iff -+O as ZZ+ 0 far upstream. 

Stokes flow in which I,+ = yg(x, y), with V2g = 0, because 
The normal stress component uYy is constant on y = 0 in any two-dimensional 

and so p = - 2p aglax + constant, everywhere in the flow ; also 

and so uyy = -p+2pLv/ay = constant there. It follows that the Thoreau- 
Langton-Reynolds ridge, which is caused by gradients of normal stress in the flow 
under the clogged surface, is a phenomenon of finite and largc Reynolds numbers. 

3.1. Surface diffusion negligible 
Let us deal first with an important simple special case. If the term in (3) involving 
D, is small enough to ignore (the precise condition for which will be found later), (3), 
(11) and (13) reduce to 

(14) 

on y = 0, so that w2-iA2 is real a t  all points there. By (8), w2 - B2z for large 121, and 
if there are to be no singularities in the flow field, analytic continuation gives 

2fg = Im (w2) = A‘ 

w2-iA2 = B22fC, (15) 

where C is an arbitrary real constant, which may be equated to zero by shifting the 
origin to a suitable point on the surface. Supposing that done, we find the exact 
solution in the transition region as 

1 1 

w = B(z+id)i = Bz:, $ = Byr3sin+Ol, (16) 
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FIGURE 1. The streamline pattern for a soluble surfactant: -, the inner solution 
(equation (16)); ---, the outer solution (equation (8)). 

FIGURE 2. I7 as a function of x for a soluble surfactant : -, the inner solution (equation (17 ) )  ; 
_-_ , the outer solution (equation (9)). In  both cases the graph of 2pu is the same shape but 
reflected in the I7-axis. 

where z1 = z+ id = rl exp (iO1), so that (rl, 0,) are polar coordinates centred at the 
point z = -id, and d = A2/B2  is a constant, which is the lengthscale of the transition. 
Equations (8) and (16) now give the surface velocity and shear stress as 

u = ~ ( i t a n $ $ ) t ,  n= p1(2cot@)t, (17) 

where q5 is the value of 8, for points on the surface, so that tan $ = d/x, and 

The outer solution (8) is evidently the same as the inner solution (16) if d = 0, and 
the inner solution tends to it as lzl/d + 00. Figure 1 shows a streamline plot and figure 
2 shows the variation of 17 with x and the geometrical interpretation of #; the 
variation of u with x is the same as that of 17 reflected in the line x = 0, apart from 
a factor 2p, by (17). 

2 FLY 237 
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3.2. Surface diffusion included 
If terms in D, are included, calculations like those leading to (14) give 

2fg = Im (w2) = 2Dsi3f/dx+A2, (19) 

on the surface y = 0, so that w2-2Dsdw/dz-iA2 is real there, and w - Bzi and 
dw/dz+O a t  infinity, and analytic continuation now gives 

d w  
-2iD,-+w2 = B’z,, 

dz1 

throughout the flow field, with the same z1 as in (16). This Riccati equation is solved, 
as usual, by putting 

2iD d5 w = -2 - 
5 dz1’ 

22 E = 0, d2E to obtain the Airy equation -- 
dzi 

if 

where s = (2D,/B)I is the lengthscale on which surface diffusion is relevant, and p is 
a complex constant. Hence 

z2 = (B/2Ds);exp [-$in] z1 = exp [ -$in] zl/s = pz1, (21) 

yAi’(z,) + SBi’(z,) 
yAi(z,) + GBi(z,) ’ 

w = -2iD,p 

If (zll +- 00 with 8, = arg z1 = in, which is in the flow field 0 < 8, < n, then 2, -+ + 00, 

both Ai(z2) and Bi(z,) are real, Bi(z,) S Ai(z,), Bi’(z2)% \Ai’(z,)l, and so w - 
2iD,/3Bi’(z2)/Bi(z,) if 6 + 0. In that case w - - 2iDS/3zi - -Bzi, which has the wrong 
sign. Hence S = 0, and 

1 

w = -2D,/3Ai‘(z2)/Ai(z2) - +Rz:, (22 ) 

as lzBl-+ co if larg z21 < n, which includes the whole flow field. The poles of w are all on 
the negative 2,-axis, which is outside the flow field. The particular cube root of - 1 
in the definition of /3 was chosen to ensure this. Properties of Airy functions were 
taken from Abramowitz & Stegun (1970) ; some earlier printings of that book had an 
error in the asymptotic expansion of the function Bi‘. It is perhaps worth noting that 
on the free surface w = f + ig has a pure imaginary limit as z1 +- CO, and that g 
increases algebraically like Blz,Ji, but that if A = 0 then f decreases exponentially. 
The easiest way to see this is by (19) which reduces to  

1 9 

f a x  D; 
_ - -  -- 

If, on the other hand, 
s = (2DJB)f 4 d = A2/B2, 

then Iz2( 9 1 t,hroughout the flow field. Mathematically, that means that the Airy 
functions may be replaced by their asymptotic approximations everywhere, and we 
may use the simple theory of 53.1 instead of the more elaborate theory of this section. 
Physically, i t  means that surface diffusion is irrelevant to the dynamics because D, 
is too small for the term including it in (3) to  be important anywhere on the surface. 
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FIGURE 3. The streamline pattern for an insoluble surfactant : -, the inner solution 
(equation(22)) ; ---, the outer solution (equation (8)). 

-6 -4 -2 2 4 6 

FIGURE 4. Surface pressure and velocity a functions of x/s for an insoluble surfactant : -, 
l7/(zBpd) from equation (22); --, u/(Bsf) from equation (22); ---, l7/(2Bpsi) from the outer 
approximation (equation (8)) ; -. -, u/(Bsi) from the outer approximation (equation (8)). 

Figure 3 shows graphs of u and I7 on the surface and figure 4 shows a streamline plot 
for this case. 

4. Applications 
4.1. Spreading film 

Suppose that a film of surfactant spreads at constant speed U across a fluid of 
kinematic viscosity v which is at rest at a great distance. The outer solution is the 
flow past a thin rigid flat plate, for which the numerical solution of the full 
NavierStokes equations was given by van de Vooren & Dijkstra (1970) and Botta 
& Dijkstra (1970). Close to the origin ( r  Q v / U )  this solution reduces to a Stokes flow 
of the form (8) with 

B = 3.0190Ub-i. (24) 
2-2 
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Carrier & Lin (1948) had given an equation equivalent to  (24) with 3.0190 replaced 
by 8 x 0.3321 = 2.657 after Van Dyke's (1975) correction is applied, but they 
assumed that the outer limit of the Stokes flow matched the inner limit of the Blasius 
boundary layer; there is of course an intermediate region when neither simplification 
holds. If the surface pressure at the downstream end of the free surface is Ur, we have 
A2 = Uf U / p ,  and hence negligible surface diffusion if 

II , /Up 9 6.9(Ds/v):, (25) 

by (23). In  this case, the transition lengthscale is d = 0.11ZZf/pU2, where p is the 
density of the liquid. Unfortunately, values of D, are not well known. If, as seems 
likely (Levich 1962), D, is close to D, the bulk diffusivity of dissolved surfactant, then 
ordinary surfactants on water will have D,/v of order 4 x lop4, and surface diffusion 
will be negligible if Uf/U,u 9 0.005. 

It has been assumed above the transition lengthscale d is much less than the size 
of the region where (8) and (24) hold, which is O ( v / U ) .  This requires (Z7JUp) 4 9;  
there is thus a reasonable range of upstream surface pressures over which the theory 
of $3.1 holds. If nf/U,u 9 9 the theory of Harper & Dixon (1974) applies instead of 
the present work. In  experiments on the Thoreau-Langton-Reynolds ridge Up is 
typically of order 0.1 mN m-l. 

For an oil slick of insoluble surfactant spreading on otherwise pure water, l7, may 
be so small upstream that the inequality (25) is reversed. I n  that case it is a good 
approximation to put d = 0 in the theory of $2.2, and the transition lengthscale is 
s = 0.75990: v b ' .  

4.2. Stagnant-cap bubble 
If our surfactant film is on the surface of an isolated stagnant-cap bubble of radius 
a and cap angle a rising steadily a t  speed U ,  with the Reynolds number Re = 
Ua/v 4 1 ,  then B is of order Ua-za (Harper 1973; Sadhal & Johnson 1983). If the 
surfactant solution is ideal and the diffusivity of dissolved surfactant is D ,  the 
kinematic surface boundary condition may be written 

a (  g) hze;:. 
a 
ae ae a-(Uu,sine) = D , -  sine- +-- 

in spherical polar coordinates ( r ,  8). If the PBclet number P = Ua/D 9 1 (which is a 
necessary condition for stagnant caps to form), the first term on the right-hand side 
is negligible except possibly in the transition region. Upstream from that region 
an/& = O(P-il7, a-l), where II, is the surface pressure at a great distance from the 
bubble, and so 

A2pa = O(P-kJU, alh).  (27) 

The ratio of transition region lengthscale to cap size is of order dlua if surface 

(28) 

diffusion is ignored, and 

dlua = O(A2/B2aa) = O(P- ; (n , /Up)  (a/h) ap4) ,  

but a is of order ( U J U p ) ~ @  (Harper 1973; Lcrncr & Harper 1991), so that 

d laa  = O(P-~(n,/Up)-t(a/h)). (29) 

The stagnant-cap approximation requires d 4 ma, and so (29) really shows that a 
necessary condition for its validity is 

h/a + P-~(l7,/U,u)-~. (30) 
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If a is of order unity, II,/U,u is of order P-4 and the condition becomes h/a p P-f. 
This necessary condition for stagnant caps was not given by Sadhal & Johnson 
(1983), who required only that P 9 1, PDID, % 1 and Re < 1 in the present case of 
a surfactant soluble only in the continuous phase and with insignificant barriers to 
adsorption and desorption. 

Surface diffusion was neglected above. That will usually be a good approximation, 
for the following reason. Terms in D, are negligible if (2D,/B)f < A2/B2,  which is 
equivalent to 

All three of the factors on the right-hand side are likely to be near 1, and h for most 
ordinary surfactants is much smaller than a for most ordinary bubbles. The 
inequality (31) therefore will usually be satisfied. The contrary hypothesis will not be 
investigated here. 

5. Conclusions 
Exact solutions have been found for the transition from free to clogged surface on 

a surface-contaminated liquid both for negligible surface diffusion (equations (16), 
(17)) and in general (equation (22)) .  The first case applies to a surfactant film 
spreading on a flat surface (or to a Thoreau-Langton-Reynolds ridge) if the liquid 
upstream of it is already somewhat polluted with a soluble surfactant. The second 
more complicated case applies to very small amounts of upstream contamination, 
possibly due to an insoluble surfactant, as described in $4.1. 

The theory also applies to stagnant caps on rising bubbles, for which surface 
diffusion will normally be negligible in practice. Inequality (30) is a necessary 
condition for the stagnant-cap approximation to be a good one for bubbles a t  low 
Reynolds numbers ; none of the extensive previous work on the subject seems to have 
mentioned it. 

I am grateful to the Oxford Centre for Industrial and Applied Mathematics and the 
Mathematical Institute, Oxford, for hospitality and facilities while this paper was 
being written, and to the Victoria University of Wellington for the extended research 
leave that made it possible to visit Oxford. Airy functions were computed with the 
NAG subroutine S17DGF (The Numerical Algorithms Group Ltd) and the figures 
were plotted with the SIMPLEPLOT subroutines (Bradford University Software 
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